
Measuring Complexity on the Web

Erik Nadel1, Kartik Shetty2, and Han Bao3

1Worcester Polytechnic Institute, einadel@wpi.edu
2Worcester Polytechnic Institute, kshetty@wpi.edu

3Worcester Polytechnic Institute, hbao@wpi.edu

Abstract— The internet has changed since its first inception.
Content being delivered online has become more interactive
and dynamic. Every company wants to keep you hooked on
the page and provide ease of use for every browser and user.
In a previous work, authors Michael Butkiewicz, Harsha V.
Madhyastha, and Vyas Sekar identify a set of metrics to
characterize the complexity of websites both at a content-level
and service-level[1].

For this paper, we use the set of metrics established in the
previous work to compare the complexity of the web in 2016 as
compared to the results found in 2011. We found that the web
had become more complex according to their metrics, but some
trends had also stayed the same. Some categories are still more
complex than others and that rank is not a strong indicator of
complexity. However, we were not able to conclude that number
of objects was related to the load time of a web page given our
data.

I. INTRODUCTION

In the original paper by Michael Butkiewics, Harsha V.
Madhyastha, and Vyas Sekar, they presented a comprehen-
sive measure-driven study of the complexity of web pages in
2011 and its impact on performance. They measured roughly
1700 websites from four geographically distributed locations
over a 7 week period. In the analysis, they focused on the
landing pages of the websites chosen and chose the websites
across a variety of ranks and categories.

To quantify websites, they used HTTP Archives(HAR),
abbreviated as HAR. Browsers can export HAR files to show
a log of a browser’s activity when loading a web page. This
includes the requests, responses, headers, content, and other
useful metrics. This format is based on JSON and allows for
easy analysis of web pages.

To analyze the web pages, they first quantified the com-
plexity of a web page based on content fetched. For the
complexity of content, this included number of objects
fetched, the sizes of the objects fetched, and the types
of content. Originally, they found no distinct difference in
features when comparing these metrics across rank. However,
they found a difference when comparing website categories.
News websites, for example, loaded a significantly higher
number of objects than others and Kids/Teen websites loaded
a larger fraction of Flash content.

In addition to content complexity, they inspected where the
content originated from. This involved looking at how much
content came from non-origin servers and how significant it
contributed to the number of bytes fetched.

After analyzing based on content complexity, they ob-
served service complexity. Service complexity involves met-
rics that affect the time to download and render a web page.
They found that the the number of objects fetched was the
most dominant factor of client-perceived load times rather
than the total number of bytes fetched to render a web site.

II. PROJECT BACKGROUND

For our experiment, we verified the key findings of the
previous researchers. Since the experiment was performed in
2011, we would be comparing the differences in the key con-
tent and service complexity metrics. Using the same methods
of data gathering, we compared the following content com-
plexity results: median web page requests, contribution of
various content types, number of objects loaded by category,
fraction of objects with respect to bytes, and flash content.
For service complexity results, we compared: the number of
servers loaded, number of non-origin servers, and fraction of
object types served from non-origin.

In verifying these results, we were able to follow the
setup of the original paper with only a difference in some
of the applications used. After collecting all of the data,
we replicated several of the charts found in the original
paper and used the charts to make conclusions based on the
differences.

III. METHODOLOGY AND SETUP

A. Original Setup

In the original paper, the authors collected the data
using a clean Firefox instance with no UX addons. To
collect the HAR data, they used the firebug extension which
supports the Firestarter extension for the actual export of
HAR data. In summary, whenever Firefox visited a web
page, it automatically created an HAR file for the request.
Next, the authors ran the Firefox instance on three Amazon
EC2(Elastic Computing) nodes and one home computer. One
instance was in Europe, one in Asia, and one in US-EAST.

At each instance, they ran a measurement agent that
periodically (60 seconds) selected a random web-page from
the list of 2000 URLs. Each run would generate an HAR file
that would be a request log of the landing page of the given
URL. These measurements were repeated for 9 weeks. To
filter bad requests, if a HAR file had a bad request, 0 bytes
received, or loaded instantly, it was removed from the data

set. In the end, the authors were left with around 1700 sites
from the original list of 2000.

B. Our Methodology and Setup

In replicating the experiment, we were able to achieve
the exact set up with a few differences. For obtaining the
Amazon EC2 nodes, we created three separate accounts to
take advantage of the free-tier and have all of the nodes
running. For the home computer, we used a digital ocean
server that we had already acquired. We did not use Firefox
for the HAR file retrieval, however. Instead, we used a docker
image that had a pre-installed browser with an HAR exporter.
When we tried using Firefox by itself, our node kept having
issues and locking up. The docker image allowed us to easily
deploy the measurement agents across the different nodes.

After collecting data for 9 weeks, we filtered out all of the
junk HAR files using the same process as the original paper
and ended up with around 1800 sites. Once we filtered out
the data, we parsed the information from the HAR file that
was needed into a spreadsheet and then plotted to recreate
the key diagrams from the original paper. With the graphs
recreated, we compared the results and made our analysis
from there.

IV. RESULTS AND COMPARATIVE ANALYSIS

We consider content level metrics and service level metrics
to understand the complexity of websites. Content level
metrics deals with the number of objects requested for each
MIME type. Service level metrics deals with the sources
used to request and render the objects for a website. For
example: www.abc.com would use internal domains like
images.abc.com to get images and then use xyz.com to
deliver third party content like javascript source files. In each
case we present a breakdown of websites across rank (eg: top
1-400 vs 10000-20000) and also across different categories
(eg: news,entertainment etc.) and then compare it to the
results obtained in the original implementation. We begin
by analyzing the metrics and comparing it to the results of
the original implementation. And then we end by analyzing
the performance (load time).

A. Content complexity

Number of objects:We start by analyzing the Figure 1
which shows the total number of objects i.e the number of
HTTP GET requests made to render a web page. In Figure
1b, we observe that the top 1-400 ranked websites require
more number of objects to render a web page. We observe
that the distribution across ranks is similar to the one in
original implementation (Figure 1a). We observe that the top
1-400 require more objects, but across other ranked bins the
distribution is qualitatively and quantitatively similar. Across
the categories, we note that the adult category stands out, as
it requires more number of objects. It is followed by the
news and the entertainment category. It is difficult to make a
comparison with the original work as they consider different
set of categories to analyze their results, but we observe
similar trend with respect to news category.

(a) Original by rank

(b) Our finding by rank

(c) Original by category

(d) Our finding by category

Fig. 1: Total number of objects loaded on the base web page
of websites across rank ranges and categories.

(a) Original by rank

(b) Our finding by rank

Fig. 2: Median number of requests for objects of different
MIME-types across different rank ranges.

Type of objects:After analyzing the total number of object
requests, we next consider their breakdown by content MIME
type. As is shown in Figure 2b, in comparison with the result
in the original paper Figure 2a, we found that the number of
image objects is around the same level as before. But image
objects in rank 1-400 were more than any other rank ranges,
which is different from the original paper. As for javascript
objects, we can clearly see in the graph that as the rank
range goes down, the number of javascript objects decrease.
One more important thing is that the number of javascript
almost doubled compared to the old number in the paper.
The number of css objects did not change much, while flash
objects basically disappeared. In the original paper, we can
see that there are about half of the websites in the first two
rank range have one flash. But according to our data, only

(a) Original by category

(b) Our finding by category

Fig. 3: Median number of requests for objects of different
MIME-types for different categories.

43 of 1791 are still using flash.
Figure 3b shows the number of objects requested of vari-

ous content types across different categories. Adult category
is probably not included in the original paper, but in our
finding, the median number of image objects adult websites
have is over 100, which is much more than other categories.
In addition, we can see in any category that the median
numbers of flash objects are all 0, which does not surprise
us though.

Then we analyzed the websites which are still using flash,
as Figure 4b shows. We can see that though flash objects still
exists, the fraction of flash objects has decreased significantly
(less than 2%), which was about 1/10 of 5 years ago when
the original paper was written.

Bytes downloaded: Figure 5b, shows the byte contribu-

(a) Original

(b) Our finding

Fig. 4: Fraction of objects accounted for by Flash objects,
normalized per category.

tion for different MIME types, which gives us a different
perspective than just considering the number of object re-
quests. We have considered median values across different
categories. We observe that in the Figure 5b, the sum
of image and java script byte contribution dominant with
respect to total byte contribution. It accounts for more than
60% across all the categories. Also, images contribute to
majority of the bytes for the adult category (around 70%).
By comparing the results of the original work(Figure 5a)
with ours, we observe that the byte contribution of flash
has disappeared across all the categories. Also, javascript
contributes around 35% across all the categories compared
to 25% in the original work.

B. Service complexity

A web page generates HTTP GET requests to more than
one servers to render its page. We divide the sources into ori-
gin and non-origin based on the domain name of the source
server. A origin server or source is under the same domain as
the website. For example: images.foo.com would be consid-
ered as a non-origin source for foo.com. A non-origin server
or source is a third party server which does not come under
the domain of the website. For example:xyz.com would be
considered as an non-origin with respect to foo.com. We

(a) Original

(b) Our finding

Fig. 5: Median normalized contribution of different MIME
types to total bytes downloaded.

now introduce the service complexities which deals with the
origin and non-origin sources for a website.

Number of non-origin services: Non-origin sources are
used by websites to deliver third party content like static
content, to track user activity (google-analytics) or use
advertisement services to generate revenue. We have used
the approach used by the authors of the original work to
distinguish between an origin and a non-origin source. We
would first identify the name servers of the website under
consideration. In the next step we would determine the name
servers for each of the source and compare it to set obtained
from the above step. A source would be considered as an
origin if it contains a name server in common with the
website and would be considered as an non-origin otherwise.
Looking at Figure 6a, we notice that there is a similar trend
with respect to number of origins across ranks from the

original work(Figure 7a). We see that top 1-400 websites use
a higher number of origins to render content than other ranks.
Looking across categories (Figure 6b) we notice that the
news category does not prominently dominate with respect
to other categories, which was not the case in the original
work (Figure 7a).

(a) Original

(b) Our finding

Fig. 6: Total number of objects loaded on the base web page
of websites across rank.

Number of distinct servers:As is shown in Figure 8b,
we can see that popular websites (in higher rank range) tend
to use more distinct servers, which is the similar result to
the result in the original paper (Figure 8a). In Figure 9b, we
also found that News websites normally have more server,
but not so distinguished from other categories as is shown in
the original paper (Figure 9a). And adult websites are using
less servers than others.

C. What do non-origins offer?

What are the differences between the object the websites
put on their own server and non-origin servers? That is what
we are going to find out. We check the URL of every object
to find out which kind of server they are in. And we first
calculate the median of each MIME type, then select the

(a) Original

(b) Our finding

Fig. 7: Total number of objects loaded on the base web page
of websites across categories.

website for which the median value of each MIME type is
close to the median value calculated previously.

Content type breakdown:Figure 10b shows the break-
down of the different content types served by non-
origins,both in terms of the number of objects and their size
in bytes of our median website. We can see that the fraction
of image objects in byte contribution is smaller than the
object contribution, which means image objects are actually
smaller than javascript and css. And this is odd because
typically images are larger than others. The result is same
as is in the original paper. The author shows the figures of
fraction by objects and bytes (Figure 11a and Figure 12a),
and explains that many small gifs are fetched from non-
origins.

However, our data is quite different. In Figure 11b and
Figure 12b, we can see that though images are still the most
objects, the number of javascript objects is very close to the
image. And in Figure 12b, we can see that the average size
of javascript is larger than image, which is different from
the result in the original paper. In addition, we test it by
counting and recording all types of images (shown in the
table) and found that gifs are actually less than 1/3 of all

(a) Original by rank

(b) Our finding by rank

Fig. 8: Number of distinct servers by rank range

images. Therefore, we believe that gifs are not the reason
for small contribution of bytes for today’s websites.

Image Type Number of Objects
image/jpeg 224181
image/gif 156116
image/png 152544
image/svg+xml 10057
image/jpg 1096
image/pjpeg 288
image/bmp 85
image/x-icon 35
image/x-png 10
image/webp 2
image/x-ms-bmp 1

Origin vs Non-origin:We understand the contribution of
both the origin and the non-origin sources to a website by
considering the respective percentage contribution of each
MIME type to the median website. By looking at the Figures
13a & 13b, we notice that the percentage of java script
objects from the origin has increased approximately 15% in
comparison to the original work. But we observe a similar
trend in comparison to the original work for the non-origin
sources.

(a) Original by category

(b) Our finding by category

Fig. 9: Number of distinct servers by category

(a) Original

(b) Our finding

Fig. 10: Normalized contribution of objects from non-origin
services in the median case

D. Load time
Load time for a webpage is an indicator of the performance

of a website. Load time is determined by looking up at

(a) Original

(b) Our finding

Fig. 11: Distribution across content types of the number of
objects from non-origins

the RenderEnd parameter in the HAR file. We used the
approach of the authors of the original work to determine
relation between the load time and the complexity metrics
that we defined above. The authors had established a cor-
relation between the load time and the number of objects
requested for a website and we wanted to confirm whether
this relationship still existed. Looking at the Figure 16 we
observe that the load time does not increase steadily as the
number of objects increased, but on the contrary we found
the load time to fluctuate as the number of objects increased.
Looking back at Figure 1d, we observed that the news,
adult and education categories sites load larger number of
objects than the other sites. But in the Figure 15, we notice
that the business and adult category sites took more time to
load than the other sites. This could imply that there might
not be a correlation between the load time and the number
of objects today. Figure 14 shows a similar trend with the
original work for the distribution of the median and 90th
percentile value’s of RenderEnd across websites. Also in the
Figure 14b we observe that about 60% of the websites have
a median load time of higher than 20 seconds. Although we
observed unusually high load time for the websites, we are

(a) Original

(b) Our finding

Fig. 12: Distribution across content types of the median
object size from non-origins

(a) Original

(b) Our finding

Fig. 13: Comparison of types of content served from origin
and non-origin servers on the median website.

more concerned with establishing or confirming relationships
between parameters.

(a) Original

(b) Our finding

Fig. 14: Distribution of RenderEnd times across all websites.

(a) Original

(b) Our finding

Fig. 15: Page load times for websites of different categories

V. CONCLUSIONS

Overall, our project was successful in gathering data in the
way that the original paper did, and comparing our data with

theirs. Through our data, we can have a better understanding
of the complexity on today’s websites, and by comparison,
we can see the changes happened these years and also trends
in the future. However, we were not able to conclude that
number of objects was related to the load time of a web page
given our data.

By comparing our results with those in the original paper,
we found that there is a big increase in the request number.
The median of request number in the samples is about twice
as the median in the original paper. In terms of different types
of objects, median number of JavaScript objects also doubled
in the past few years. And a JavaScript object normally
contributes more bytes than other type of objects. Image
objects still dominate fraction of objects, but not in bytes. In
other words, image objects are actually smaller in size. As
to flash objects, we found that less than 3% of websites in
our sample are still using flash. And even though they use
flash, the fraction of flash objects is quite small, less than
2%. In summary, what has changed in recent years is that
JavaScript has doubled, while flash is disappearing.

And by analyzing our result by categories, we found that
news websites are still loading more objects than other cat-
egories, except for adult websites which loads large number
of images. And news websites also get their contents from
more servers than others. In the meanwhile, by analyzing our
result by rank, we found that popular websites tend to have
more objects and connect more servers especially their own
servers.

VI. REFERENCES

1. Butkiewicz, M., Madhyastha, H. V., & Sekar, V. (2011,
November). Understanding website complexity: measure-
ments, metrics, and implications. In Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement
conference (pp. 313-328). ACM.

(a) Original

(b) Our finding

Fig. 16: Box-and-whiskers plot between RenderEnd and
number of objects.

